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SUMMARY

Non-linear regression (NLR) techniques are used widely to fit weed field emergence patterns to soil microclimatic
indices using S-type functions. Artificial neural networks (ANNs) present interesting and alternative features
for such modelling purposes. In the present work, a univariate hydrothermal-time based Weibull model and a
bivariate (hydro-time and thermal-time) ANN were developed to study wild oat emergence under non-moisture
restriction conditions using data from different locations worldwide. Results indicated a higher accuracy of the
neural network in comparison with the NLR approach due to the improved descriptive capacity of thermal-time
and the hydro-time as independent explanatory variables. The bivariate ANN model outperformed the con-
ventional Weibull approach, in terms of RMSE of the test set, by 70·8%. These outcomes suggest the potential
applicability of the proposed modelling approach in the design of weed management decision support systems.

INTRODUCTION

Significant efforts have been made by the weed
research community to develop accurate weed emer-
gence models. These models aim to predict the time
and magnitude of weed emergence flushes to assist
farmers in determining the best time to apply a control
measure. However, weed emergence in the field relies
heavily on soil conditions and weed biology which,
on some occasions, is dominated by as yet unravelled
seed dormancy processes hindering the task of ac-
curate prediction (Forcella et al. 2000; Batlla &
Benech-Arnold 2007).
Usually, researchers have adopted both mech-

anistic and empirical approaches to predict weed
emergence. Mechanistic models that provide an

intimate description of the basic eco-physiological
processes underlying seedling emergence (Colbach
et al. 2011; Colbach & Mézière 2013; Gardarin et al.
2010, 2012) are desirable from an explanatory point of
view. However, as Grundy (2003) remarked, these
models are more difficult to develop and, although
built on a biological process-based framework, they do
not have the simplicity and flexibility that would be
required for practical decision support, which are
offered by weather-based models. In addition, reduc-
tionist approaches for weed emergence prediction still
remain largely empirical in nature (Grundy 2003).

Empirical models to predict weed seedling emer-
gence in agronomic systems are usually built on vari-
ables related to soil temperature and soil water
potential. Soil microclimate-derived indices such as
hydrothermal time, thermal time or hydro-time are
commonly used for model development. They assume
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that emergence rates depend on the amount by which
soil temperature and soil water potential exceed a
given threshold (Bradford 2002). These approaches
tend to make emergence predictions independent of
weather conditions (e.g. air temperature and precipi-
tation) and soil characteristics (e.g. texture and soil
density), thus enabling the development of more
general and widely applicable models.

Parametric non-linear regression (NLR) models
based on S-shaped curves (e.g. Weibull) using thermal
and hydro-thermal indices as explanatory variables
have been usedwidely for weed emergence prediction
(Forcella 1998; Schutte et al. 2008; Izquierdo et al.
2009; Bullied et al. 2012). In many cases, NLR models
have demonstrated adequate representation to the
observed data; however, they present several major
limitations. Specifically, NLR models are sometimes
not flexible enough to capture complex features in
the explanatory variable, such as abrupt ‘jumps’ or
heavy ‘tails’ (Cao et al. 2011). Moreover, observed
cumulative emergence values obtained from consecu-
tive monitoring approaches are not statistically
independent. However, this is not considered expli-
citly in the weed science literature, where fitting the
model is the goal regardless of whether the data are
independent or not (Onofri et al. 2010; Cao et al.
2011).

Alternative modelling approaches based on survival
analysis (Onofri et al. 2010, 2011), genetic algorithms
(Haj Seyed Hadi & González-Andújar 2009) and
artificial neural networks (ANNs) (Chantre et al. 2012)
have also been developed. In particular, ANNs are
semi-parametric tools that provide a practical and
flexible modelling framework known for their capacity
to describe highly non-linear relationships among
variables, thus showing a high potential applicability
in ecological systems (Lek & Guégan 1999). ANNs are
massively interconnected parallel processors that
allow the storage of experimental knowledge (training
data) in order to use it for a predictive purpose. Some
advantages of ANNs are: (i) effective implementation
of a wide variety of non-linear mappings, (ii) admit-
tance of input/output multivariate mapping, (iii) no
requirement for a given a priori shape fitting function
and (iv) requirement of fewer adjustable parameters
than conventionalmultivariate techniques (sensu lato).
Although ANNs have been used intensively to solve
highly complex non-linear mapping problems in agro-
nomical systems (Alvarez 2009), their application for
modelling weed emergence remains largely unex-
plored (Chantre et al. 2012).

Wild oat (Avena fatua L.) is a world-wide invasive
species that competes strongly with small grain cereal
crops, causing significant yield losses when left
unmanaged (Cousens et al. 1991). Consequently, a
thorough understanding of the timing and magnitude
of wild oat seedling emergence in the field is important
for its control in crop systems. Some NLR models have
been developed to explain the emergence of this
species (González-Andújar et al. 2001; Martinson
et al. 2007; Page et al. 2006; Moschini et al. 2009).
More recently, models based on ANNs have been
proposed for wild oat emergence prediction as an
alternative to NLR models, with successful results
(Chantre et al. 2012).

The objective of the present work was to perform
a comparative study between ANNs and NLR ap-
proaches to model wild oat emergence using data
gathered from locations in the United States, Canada
and Australia.

MATERIALS AND METHODS

Field experimental data

Wild oat emergence data for a number of years and
locations in Canada, USA and Australia were gathered
(Table 1). Emergence data from North Dakota
and Minnesota (USA) were derived from Martinson
et al. (2007). Associated weather data were obtained
from the following websites: http://ndawn.ndsu.
nodak.edu/daily-table-form.html and http://climate.
umn.edu/HIDradius/radius.asp (211886 Crookston).
Seedling information from Montana (USA) came
from Mickelson & Grey (2006) and weather data
from http://www.sarc.montana.edu/php/weather. For
Manitoba (Canada), seedling emergence data were
reported (A. M. Marginet, personal communication)
and further discussed by Bullied et al. (2003). Weather
data came from the nearby official weather stations
of Brandon and Cypress River, Manitoba (Canada).
Web-based weather records were downloaded from
http://climate.weatheroffice.gc.ca/advanceSearch/
searchHistoricData_e.html. Lastly, data from South
Australia were taken from Chauhan et al. (2006) and
http://www.bom.gov.au/climate/data/. Up to 0·20 of
the data for some weather variables were missing at
Roseworthy, South Australia. In some cases, minimum
air temperature was recorded but not maximum air
temperature (or vice versa). To rectify this situation,
days with any missing values were eliminated from a
revised data set and linear regressions devised for
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minimum air temperature v.maximum air temperature
(R2=0·60) and vice versa (R2=0·52). These regressions
were substituted for missing values in the original data
set. For missing rainfall events, records from nearby
stations were examined; all showed nil values for days
with missing data at Roseworthy, except 2 July 2005.
An average value of 5 mm rain was inserted into the
original data set for that date.

Estimation of soil temperature and soil water
potential

The Soil Temperature and Moisture Model (STM2) was
used to estimate soil microclimate conditions (Spokas
& Forcella 2009). In the present paper, 20 mm was
considered to be a representative seed burial depth for
all experimental data sets. The STM2 uses daily rainfall
and minimum and maximum air temperatures, along
with soil texture, organic matter and various other
simple site descriptors, as input variables to simulate
hourly or daily values of soil temperature and soil
water potential. The model simulates conditions in
ploughed (conventional tillage) and direct-drilled
(no-tillage) soils through adjustments in ‘% shade’ of
the soil surface (i.e. residue cover) and bulk density. It
has been used successfully in both temperate and
Mediterranean-type environments around the world
(Schutte et al. 2008; Masin et al. 2012).

Input variables for emergence models

Many definitions of thermal time and hydro-time exist.
Moreover, since all the definitions depend on several
cardinal parameters (Gardarin et al. 2010) many more

indices can be defined by making different choices
among such parameters. The following indices were
used as input variables for model development:

Thermal time (I)

Thermal time (θT
I ) accumulation was calculated ac-

cording to Hammer et al. (1993):

θ I
T =

∑
i=1,n

(T − Tb), if Tb , T , To (1a)

θ I
T =

∑
i=1,n

(T − Tb) 1− To − Tb
Tm − Tb

( )
,

if To , T , Tm

(1b)

θ I
T = 0, otherwise (1c)

Equations (1a) and (1b) are defined for the sub-optimal
and supra-optimal thermal ranges, respectively, where
the term ‘i=1, n’ represents calendar days, T is the
estimated mean daily soil temperature, Tb, To and Tm
are the base, optimal and maximum temperatures for
wild oat seedling emergence, respectively. The follow-
ing cardinal temperatures values were used: Tb=0 °C
(Bullied et al. 2003), To=15 °C and Tm=35 °C
(Sharma et al. 1976).

Hydro-time (I)

Hydro-time (θH
I ) was calculated by Bradford (1990) as

θ I
H =

∑
i=1,n

(Ψ− Ψb), if Ψ . Ψb (2a)

θ I
H = 0, otherwise (2b)

where Ψ is the estimated mean daily soil water
potential and Ψb is the base water potential for

Table 1. Description of site locations

Location Years Soil characteristics
Coordinates and
elevation

Tillage
system

Crookston, Minnesota, USA 2002/2003 Clay loam, 5% OM 38°08′N-97°00′W
273 m asl

No-tillage

Fargo, North Dakota, USA 2002/2003 Clay, 4·5% OM 46°52′N-96°47′W
274 m asl

No-tillage

Huntley, Montana, USA 2000/2001/2002 Silty clay, 2·3% OM 45°53′N-108° 18′W
921 m asl

Conv. Tillage

Brandon, Manitoba, Canada 2000 Clay loam, 5% OM 49°54′N-99°57′W
388 m asl

No-tillage

Cypress R., Manitoba, Canada 2000 Sandy loam, 5% OM 49°33′N-99°05′W
374 m asl

Conv. Tillage

Roseworthy, South Australia, Australia 2004 Heavy clay, 3·4% OM 34°32′S-°38°44′E
65 m asl

No-tillage

Roseworthy, South Australia, Australia 2005 Clay loam, 3·1% OM 34°32′S-°38°44′E
65 m asl

No-tillage
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emergence. A value ofΨb=−0·8MPawas selected for
model development based on numerous iterations of
the aforementioned data sets to preliminary hydro-
thermal-time indices. Values used in the literature for
Ψb of wild oat germination range from −0·6 to
−1·2MPa (Martinson et al. 2007).

The following alternative definitions of thermal time
(θT

II) and hydro-time (θH
II ) were adopted (Leguizamón

et al. 2005) for the calculation of the hydrothermal
time index.

Thermal time (II)

Thermal time (θT
II) accumulation was calculated as

θ II
T =

∑
i=1,n

(T − Tb), if Tb , T (3a)

θ II
T = 0, otherwise (3b)

Hydro-time (II)

Hydro-time (θH
II ) depicted as a binary variable:

θ II
H = 1, when Ψ . Ψb (4a)

θ II
H = 0, when Ψ , Ψb (4b)

Hydrothermal time

Hydrothermal time calculation was performed as
described by Bradford (2002):

θHT = θ II
T θ

II
H (5)

where θT
II and θH

II are defined according to Eqns (3) and
(4), respectively.

NLR model

The Weibull model was used as a representative of
the NLR approach. The selection of the following
function was based on its wide implementation in
weed emergence prediction models (Forcella 1998;
Schutte et al. 2008; Bullied et al. 2012):

AcEm = 1− exp − ln 2( ) x
α

( )β( )
(6)

In Eqn (6), AcEm is the accumulated emergence
(in proportion), x is the applied hydrothermal time
index (θHT) and α and β are the model parameters. An
NLR fitting routine was applied for parameter esti-
mation using the Levenberg–Marquardt algorithm
of GraphPad Prism Software (GraphPad version 4.0,
San Diego, California, USA).

ANNs modelling

Figure 1 shows a three-layer feed-forward ANN. The
network has two inputs (x1, x2), one output (y) and
three neurons in the hidden layer.

Each of the input nodes receives one input (x1, x2)
and broadcasts it to each one of the hidden neurons.
Each hidden neuron computes its activation function
and broadcasts its result (z1, z2, z3) to the single output
neuron that finally produces the response of the
network (y). The output signal of each hidden neuron
(zj) is calculated as

zj = f
∑
i=1,2

vijXi + v0j

( )
, j = 1, . . . , 3 (7)

while the output of the network is given by

y = f
∑
j=1,3

wjzj +w0

( )
(8)

In Eqns (7) and (8), the term f (xxxxx) is the activation
function of the network, vij are the weights of the
connections between the input and hidden neurons
and v0j is the bias on hidden neuron j. Similarly, wj

represents the weights of the connections between the
hidden and output neurons and w0 is the bias of the
output neuron.

A bivariate ANN with three neurons in the hidden
layer was used as a representative of the neural
network approach:

AcEm = ANN3 θ I
T, θ

I
H

( ) (9)
In the present work, a feed-forward neural network
structure with three layers was adopted (Fig. 1). Several
ANNs with different numbers of neurons in the hidden
layer were investigated, following the programming

f

f

f

f

x1

z1

z2

z3

x2

y

v11

v12

v13

v21

v22

v23

v01

v02

v03

w0

w1

w2

w3

Fig. 1. ANN architecture with three layers, two inputs, one
output and three neurons in the hidden layer.
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guidelines adopted in Chantre et al. (2012). Specifi-
cally, hyperbolic tangent sigmoid transfer functions
were used to model the neurons and the Bayesian
Regularization algorithm was selected for training
purposes. Besides weights and biases, the effective
number of parameters (η), a measure of how many of
the parameters of the network are used effectively in
reducing the error function, was also calculated.
Importantly, many alternative ANN models could

have been generated. In particular, the use of ANNs
with θHT as the only explanatory variable was also
explored. Since the corresponding results were com-
parable to those of the Weibull model (Eqn 6), this
version is not included in the present study. Moreover,
many ANNmodels can be generated by increasing the
number of neurons in the hidden layer. The optimal
number of neurons in the hidden layer in the de-
veloped ANN model (Eqn 9) was obtained by trials
with increasing numbers of nodes, evaluating typical
model performance indicators (test set root mean
square error (RMSE) and Akaike’s information criteria
(AIC)) and the graphical behaviour of the predictions
for the test sets (Chantre et al. 2012). The Neural
Network Toolbox of Matlab (Beale et al. 2011) was
used for programming the ANNs.

Goodness-of-fit and model performance

In all cases, goodness-of-fit measures were based on
the RMSE of the training set. The predictive capability
of the developedmodels was based on the RMSE of the
test set:

RMSE =


















1
N

∑N
i=1

(yi − ŷi)2
√√√√ (10)

where y and ŷ are the observed and predicted data,
respectively. N represents the number of observations.
Comparison betweenmodels was performed on AIC

(Burnham & Anderson 2002).

Training and test subsets

The available data (Table 1) were divided into training
(0·67 of the data set) and testing (0·33 of the data set)
subsets. Training and testing data were classified
according to Table 2 to represent each location and
soil tillage condition adequately.

RESULTS

Model parameters for the univariate NLR and bivariate
ANN approaches are shown in Table 3.

The models examined in the present paper provided
an adequate fit for the training and test data sets
(Table 4). According to the AIC-based model selection
technique, the ANN model presented a better per-
formance index than theWeibull model (Table 4). The
observed data and the predictions are graphically
presented in Fig. 2. Calendar time (Julian days) was
used in the abscissas instead of soil microclimatic
indices to simultaneously present the predictions of
both, univariate and bivariate models.

As observed in Fig. 2, the Weibull model (dotted
line) failed to adequately predict wild oat emergence
patterns in Montana (RMSE=0·24), South Australia
(RMSE=0·33) and Manitoba (RMSE=0·27), but did
produce acceptable results for North Dakota
(RMSE=0·13). The univariate NLR model clearly
overestimated emergence in South Australia and
Manitoba, while a moderate overestimation was ob-
served at the onset of the emergence period in
Montana followed by an appreciable underestimation
during the rest of the period. A slight underestimation
was also registered in North Dakota (Fig. 2). Con-
versely, the ANNmodel provided an overall very good
fit (Fig. 2, solid line) with an excellent representation in
North Dakota (RMSE=0·03), South Australia (RMSE=
0·06) and Manitoba (RMSE=0·05) with only a slight
overestimation in Montana (RMSE=0·10). From these
results the Weibull model, representative of the NLR
approach, was unable to predict accurately both the
timing andmagnitude of wild oat emergence flushes in
the majority of the evaluated locations.

DISCUSSION

The bivariate ANN approach based on thermal time
and hydro-time as explanatory variables significantly

Table 2. Training and test sets. NT=no-tillage,
CT=conventional tillage

Training set
(0·67 of data set)

Testing set
(0·33 of data set)

1. Minnesota 2002 (NT) 9. North Dakota 2003 (NT)
2. Minnesota 2003 (NT) 10. Montana 2002 (CT)
3. North Dakota 2002 (NT) 11. South Australia 2005 (NT)
4. Montana 2000 (CT) 12. Manitoba 2000 (CT)
5. Montana 2001a (CT)
6. Montana 2001b (CT)
7. South Australia 2004

(NT)
8. Manitoba 2000 (NT)
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improved wild oat emergence predictions. These
results qualitatively coincide with those presented by
Chantre et al. (2012), who concluded that univariate
NLR and ANN models based on hydrothermal time
indices were not able to predict wild oat emergence
patterns typical of a semiarid environment as well as
bivariate ANN models. The reason for the superiority
of the bivariate models might stem from the fact that
the emergence process could be described in terms of
a germination phase and a post-germination stage,
assuming seed dormancy to be negligible. As sug-
gested by other authors (Bradford 2002; Brisson et al.
2008), germination depends on both thermal ac-
cumulation and moisture conditions, while post-
germination elongation of the coleoptile (shoot
growth) is mostly driven by thermal time accumu-
lation. The use of hydro-thermal indices as single
explanatory variables in univariate models combines
both effects in order to minimize the prediction error.
Conversely, the adoption of the two independent input
variables (i.e. thermal time and hydro-time) weighted
differently within a neural network, which allowed a
more intimate discrimination of the germination and
post-germination processes. These results should alert

weed modellers to extrapolate the usage of θHT from
germination to emergence models only with great
caution.

Notably, while a bivariate ANN model with 12
effective parameters provided an excellent represen-
tation for the regular field emergence data character-
istic of temperate environments without considerable
restrictive soil moisture limitations, as in the present
case, a more complex network with 20 effective
parameters was required to represent the irregular and
timely distributed emergence observed in a semiarid
region (Chantre et al. 2012).

An ad hoc attempt to use themodel developed in the
present work to predict wild oat emergence with the
weather data used in Chantre et al. (2012) showed that
field emergence clearly was over-estimated, although
it was possible to adequately estimate the onset of the
emergence time-window (results not shown). As stated
by Grundy et al. (2003), predicting the timing of a flush
of seedlings is easier than estimating the absolute
magnitude of emergence due to fact that the latter is
influenced by the seed dormancy status and seed
longevity, among other factors.

The differences between wild oat emergence
patterns in semiarid conditions (Chantre et al. 2012)
and those studied in the present work might be attrib-
uted mainly to the effect of contrasting seed bank
dormancy behaviour due to ecological adaptations to
different regional climatic conditions. Seed dormancy
is a crucial mechanism to avoid germination under
unfavourable environmental conditions for seedling
survival, extending seed longevity in the soil (Baskin &
Baskin 1998). In highly unpredictable climatic environ-
ments, soil temperature and water availability are key
environmental factors regulating the dormancy status
of weed seed banks (Bouwmeester 1990). Indeed, for
wild oat specifically, the interplay of temperature and
moisture on dormancy relief is complex. Dormancy
relief is fastest and greatest at high temperatures and
low seed moisture (e.g. 40 °C, 10%). However, at low
temperatures (e.g. 20 °C), high seed moisture (18%)
allows maximum dormancy relief (Foley 1994).

Evidently, wild oat has developed specific ecologi-
cal adaptations to different regional climatic conditions
with respect to dormancy, perhaps via selection of
genes at three loci as described by Fennimore et al.
(1999). In temperate or Mediterranean environments
with either non-severe soil moisture availability
limitations or seasonal limitations that are predictable
during the emergence period, regular and concen-
trated cumulative emergence curves are observed

Table 3. Parameters estimated for univariate and
bivariate models. vij =connection weights between
input-hidden layer neurons, wj=connection weights
between hidden and output layer neurons, v0j=bias
on hidden neuron j, w0=output neuron bias

Model Parameters

Weibull (θHT) α: 286·3± 10·04
β: 2·7± 0·34

ANN3 (θT
I , θH

I ) v11: −2·67, v12: −17·01, v13: 4·46
v21: 8·58, v22: 32·07, v23: −1·00
w11: 2·27, w12: 0·74, w13: 3·13
v01: 6·60, v02: 5·37, v03: 2·18
w0: −2·68

Table 4. Values of the AIC and RMSE for the
univariate NLR and bivariate ANN3 models. m=total
number of model parameters, η=number of effective
parameters

Model m η AIC
RMSE
train

RMSE
test

Weibull (θHT) 2 – −1·438 0·19 0·24
ANN3 (θT

I , θH
I ) 13 12 −2·447 0·05 0·07
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(Chauhan et al. 2006; Page et al. 2006; Martinson et al.
2007; the present paper). Conversely, in semiarid
regions typical emergence patterns are very irregular
with multiple cohorts distributed within a considerably
large time-span (Chantre et al. 2012). For the latter
case, such behaviour could be attributed to a highly
unpredictable annual precipitation regime and also to
the effect of a heterogeneous maternal environment
during seed maturation (López & Vigna 1991).
Maternal effects related to climatic differences during
seed development are expected to influence greatly
the dormancy behaviour of a given species population
or ecotype (Baskin & Baskin 1998), thus contributing
to potentially unpredictable variability of the observed
emergence data (Grundy et al. 2003). As suggested
by Peters (1982), the effect of a variable environment
during seed maturation in the panicle is expected to
affect long-term dynamics of wild oat populations.
These ecological adaptations prevent, at the

moment, the development of ‘universal’ weed emer-
gence predictive models. A deeper understanding
of the factors that regulate the sub-processes that take

place before and during emergence (dormancy
release, germination and initial shoot growth) should
contribute to the development of such universal
predictors.

Overall, it might be concluded that bivariate ANN
models constitute a relatively simple modelling frame-
work and provide adequate representation of wild oat
field emergence when developed for specific environ-
mental conditions. Furthermore, from a practical
agronomic perspective, these features encourage the
use of ANNs as emergence predictors within weed
management decision support systems, but perhaps
more importantly, ANN modelling contributed to the
understanding of the differences in emergence behav-
iour among populations of weed species (wild oat, in
this case). In addition, it helped to rationalize why
developing universal emergence models for wild oat
may not be possible. The latter result is important in a
practical sense and points out the importance of
understanding weed species populations on a regional
basis and developing or modifying management
regimes accordingly.
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Fig. 2. Observed v. predicted wild oat cumulative emergence curves for the test set using Weibull (θHT) (dotted line) and
ANN3 (θT

I , θH
I ) (solid line) models. (a) North Dakota 2003 (NT), (b) Montana 2002 (CT), (c) South Australia 2005 (NT) and

(d ) Manitoba 2000 (CT). NT=no-tillage, CT=conventional tillage.
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